
WALSAIP

DRNA

P D CGroupGroup
P a r a l l e l &
D i s t r i b u t e d
C o m p u t i n g 6

Scheduling Divisible Tasks with Message Passing
Interface

By: Jaime Ballesteros, PhD Student

Advisor:

Prof. Jaime Seguel

Parallel and Distributed Computing Laboratory

University of Puerto Rico at Mayaguez (UPRM)

May 2007

P D CGroupGroup
P a r a l l e l &
D i s t r i b u t e d
C o m p u t i n g 6

WALSAIP

Problem formulation

How to effect task scheduling in a distributed system, specifically in numerical
simulations with an MPI-flavor, in order determine the most effective orchestration of
communications and computations that will give the optimal throughput of the system.

Justification:
Numerical simulations require optimal throughput in order to return accurate results in a
reasonable time. Sometimes using a distributed system to compute simulations will give
better results, but orchestration of communications and computations has to obey a
predefined scheduling policy, that, in some cases, is unlikely to reach an optimal
throughput in a expected time.

P D CGroupGroup
P a r a l l e l &
D i s t r i b u t e d
C o m p u t i n g 6

WALSAIP

Methodology (Solution Approach)

Maximize ntask(G) = ∑
=

p

i i

i

w1

α

Subject to

,i∀ 10 ≤≤ iα

),(, inji ∈∀∀ 10 ≤≤
ij

s

),(, inji ∈∀∀ 10 ≤≤ ijr

,Eeij ∈∀ ijij rs =

,i∀ 1
)(

≤∑
∈ inj

ij
s

,i∀ 1
)(

≤∑
∈ inj

ijr

,Eeij ∈∀ 1≤+ ijij rs

,mi ≠∀ ∑∑
∈∈

+=

)()(inj ij

ij

i

i

inj ij

ij

c

s

wc

r α

),(mni∈∀ 0=mjr

Steady-state scheduling:
• Provides the asymptotically optimal throughput scheduler in master-slave applications
(i.e. divisible applications).
• Solved in polynomial time with linear programming

Elements of divisible task complexity theory:
• Atomic tasks, unit tasks; volume and communications
• Provides the asymptotically shortest schedule for
processes with single communication phase. All process end
processing at the same point in time.
• Solved in polynomial time

The system will receive the user code, identify the
atomic tasks and communication graph, applied the
theoretical framework and emit code, pretty much in
the spirit of the FFTW or some parallel data base
search algorithms.

P D CGroupGroup
P a r a l l e l &
D i s t r i b u t e d
C o m p u t i n g 6

WALSAIP

Applications Tools

Master Node

Sub-Master Node

Computational Node

Computational Node

Master Node

Sub-Master Node

Computational Node

Computational Node

In our first study of Steady
State scheduling theory we
implement Steady State
Scheduler V1.0 in Python and it:
- Allows to change communication
and execution times.
- Uses Glpk® to solve the Master-
Slave linear programming problem.
- Constructs a theoretical schedule.

Open MPI and GCC will be our primary
tools:
Process and communication scheduling will
be reflected in the source code and
“controlled” with a feed-back control
mechanism based on the communication
flow.

P D CGroupGroup
P a r a l l e l &
D i s t r i b u t e d
C o m p u t i n g 6

WALSAIP

Research Results

1. By using the demo, we could identify some observables in the
system and the subsequent behavior in order to make an in-
depth study of steady state scheduling mechanism.

2. We have extended (or perhaps) unified the theory of load
divisible and steady state scheduling for application tasks that
can be mapped as starts or trees.

3. We first modified the divisible load scheduler to make it
periodic, saving thus a significant amount of start-up overhead.
Then, we applied the same technique to the steady state
scheduler to get a hybrid method that is provable superior to
both of its ancestors.

4. We also developed a communication centric formulation of the
new scheduler. Such formulation allows for the absorption of
transients (decline in the processor or network speed).

